3.345 \(\int \frac{\tan ^2(e+f x)}{a+b \sec ^2(e+f x)} \, dx\)

Optimal. Leaf size=46 \[ \frac{\sqrt{a+b} \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{a \sqrt{b} f}-\frac{x}{a} \]

[Out]

-(x/a) + (Sqrt[a + b]*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b]])/(a*Sqrt[b]*f)

________________________________________________________________________________________

Rubi [A]  time = 0.126275, antiderivative size = 46, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {4141, 1975, 481, 203, 205} \[ \frac{\sqrt{a+b} \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{a \sqrt{b} f}-\frac{x}{a} \]

Antiderivative was successfully verified.

[In]

Int[Tan[e + f*x]^2/(a + b*Sec[e + f*x]^2),x]

[Out]

-(x/a) + (Sqrt[a + b]*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b]])/(a*Sqrt[b]*f)

Rule 4141

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[((d*ff*x)^m*(a + b*(1 + ff^2*x^2)^(n/2))^p)/(1 + ff^
2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && IntegerQ[n/2] && (IntegerQ[m/2] ||
EqQ[n, 2])

Rule 1975

Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*ExpandToSum[u, x]^p*ExpandToSum[v, x]^q
, x] /; FreeQ[{e, m, p, q}, x] && BinomialQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0]
&&  !BinomialMatchQ[{u, v}, x]

Rule 481

Int[((e_.)*(x_))^(m_.)/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> -Dist[(a*e^n)/(b*c -
a*d), Int[(e*x)^(m - n)/(a + b*x^n), x], x] + Dist[(c*e^n)/(b*c - a*d), Int[(e*x)^(m - n)/(c + d*x^n), x], x]
/; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LeQ[n, m, 2*n - 1]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\tan ^2(e+f x)}{a+b \sec ^2(e+f x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x^2}{\left (1+x^2\right ) \left (a+b \left (1+x^2\right )\right )} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\operatorname{Subst}\left (\int \frac{x^2}{\left (1+x^2\right ) \left (a+b+b x^2\right )} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{\operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\tan (e+f x)\right )}{a f}+\frac{(a+b) \operatorname{Subst}\left (\int \frac{1}{a+b+b x^2} \, dx,x,\tan (e+f x)\right )}{a f}\\ &=-\frac{x}{a}+\frac{\sqrt{a+b} \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{a \sqrt{b} f}\\ \end{align*}

Mathematica [C]  time = 0.309408, size = 184, normalized size = 4. \[ -\frac{\sec ^2(e+f x) (a \cos (2 (e+f x))+a+2 b) \left (f x \sqrt{a+b} \sqrt{b (\cos (e)-i \sin (e))^4}+(a+b) (\cos (2 e)-i \sin (2 e)) \tan ^{-1}\left (\frac{(\cos (2 e)-i \sin (2 e)) \sec (f x) (a \sin (2 e+f x)-(a+2 b) \sin (f x))}{2 \sqrt{a+b} \sqrt{b (\cos (e)-i \sin (e))^4}}\right )\right )}{2 a f \sqrt{a+b} \sqrt{b (\cos (e)-i \sin (e))^4} \left (a+b \sec ^2(e+f x)\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[e + f*x]^2/(a + b*Sec[e + f*x]^2),x]

[Out]

-((a + 2*b + a*Cos[2*(e + f*x)])*Sec[e + f*x]^2*(Sqrt[a + b]*f*x*Sqrt[b*(Cos[e] - I*Sin[e])^4] + (a + b)*ArcTa
n[(Sec[f*x]*(Cos[2*e] - I*Sin[2*e])*(-((a + 2*b)*Sin[f*x]) + a*Sin[2*e + f*x]))/(2*Sqrt[a + b]*Sqrt[b*(Cos[e]
- I*Sin[e])^4])]*(Cos[2*e] - I*Sin[2*e])))/(2*a*Sqrt[a + b]*f*(a + b*Sec[e + f*x]^2)*Sqrt[b*(Cos[e] - I*Sin[e]
)^4])

________________________________________________________________________________________

Maple [A]  time = 0.081, size = 75, normalized size = 1.6 \begin{align*} -{\frac{\arctan \left ( \tan \left ( fx+e \right ) \right ) }{fa}}+{\frac{1}{f}\arctan \left ({\tan \left ( fx+e \right ) b{\frac{1}{\sqrt{ \left ( a+b \right ) b}}}} \right ){\frac{1}{\sqrt{ \left ( a+b \right ) b}}}}+{\frac{b}{fa}\arctan \left ({\tan \left ( fx+e \right ) b{\frac{1}{\sqrt{ \left ( a+b \right ) b}}}} \right ){\frac{1}{\sqrt{ \left ( a+b \right ) b}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(f*x+e)^2/(a+b*sec(f*x+e)^2),x)

[Out]

-1/f/a*arctan(tan(f*x+e))+1/f/((a+b)*b)^(1/2)*arctan(tan(f*x+e)*b/((a+b)*b)^(1/2))+1/f*b/a/((a+b)*b)^(1/2)*arc
tan(tan(f*x+e)*b/((a+b)*b)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^2/(a+b*sec(f*x+e)^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 0.553306, size = 533, normalized size = 11.59 \begin{align*} \left [-\frac{4 \, f x - \sqrt{-\frac{a + b}{b}} \log \left (\frac{{\left (a^{2} + 8 \, a b + 8 \, b^{2}\right )} \cos \left (f x + e\right )^{4} - 2 \,{\left (3 \, a b + 4 \, b^{2}\right )} \cos \left (f x + e\right )^{2} - 4 \,{\left ({\left (a b + 2 \, b^{2}\right )} \cos \left (f x + e\right )^{3} - b^{2} \cos \left (f x + e\right )\right )} \sqrt{-\frac{a + b}{b}} \sin \left (f x + e\right ) + b^{2}}{a^{2} \cos \left (f x + e\right )^{4} + 2 \, a b \cos \left (f x + e\right )^{2} + b^{2}}\right )}{4 \, a f}, -\frac{2 \, f x + \sqrt{\frac{a + b}{b}} \arctan \left (\frac{{\left ({\left (a + 2 \, b\right )} \cos \left (f x + e\right )^{2} - b\right )} \sqrt{\frac{a + b}{b}}}{2 \,{\left (a + b\right )} \cos \left (f x + e\right ) \sin \left (f x + e\right )}\right )}{2 \, a f}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^2/(a+b*sec(f*x+e)^2),x, algorithm="fricas")

[Out]

[-1/4*(4*f*x - sqrt(-(a + b)/b)*log(((a^2 + 8*a*b + 8*b^2)*cos(f*x + e)^4 - 2*(3*a*b + 4*b^2)*cos(f*x + e)^2 -
 4*((a*b + 2*b^2)*cos(f*x + e)^3 - b^2*cos(f*x + e))*sqrt(-(a + b)/b)*sin(f*x + e) + b^2)/(a^2*cos(f*x + e)^4
+ 2*a*b*cos(f*x + e)^2 + b^2)))/(a*f), -1/2*(2*f*x + sqrt((a + b)/b)*arctan(1/2*((a + 2*b)*cos(f*x + e)^2 - b)
*sqrt((a + b)/b)/((a + b)*cos(f*x + e)*sin(f*x + e))))/(a*f)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan ^{2}{\left (e + f x \right )}}{a + b \sec ^{2}{\left (e + f x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)**2/(a+b*sec(f*x+e)**2),x)

[Out]

Integral(tan(e + f*x)**2/(a + b*sec(e + f*x)**2), x)

________________________________________________________________________________________

Giac [A]  time = 1.48892, size = 93, normalized size = 2.02 \begin{align*} \frac{\frac{{\left (\pi \left \lfloor \frac{f x + e}{\pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (b\right ) + \arctan \left (\frac{b \tan \left (f x + e\right )}{\sqrt{a b + b^{2}}}\right )\right )}{\left (a + b\right )}}{\sqrt{a b + b^{2}} a} - \frac{f x + e}{a}}{f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^2/(a+b*sec(f*x+e)^2),x, algorithm="giac")

[Out]

((pi*floor((f*x + e)/pi + 1/2)*sgn(b) + arctan(b*tan(f*x + e)/sqrt(a*b + b^2)))*(a + b)/(sqrt(a*b + b^2)*a) -
(f*x + e)/a)/f